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Abstract
This note concerns with boundary value problems as

Lu+ aou = f in Q,
(Vu, 7Y + colu|™ 'u= g on o9,

where L is an elliptic possibly degenerate second order operatorco are positive functiony is an
oblique exterior vectoandm > 1. By means of some arguments close to the Dynamics Progragnmin
we prove that the viscosity solution admitsepresentation formuléhat can be considered as an extension
of probabilistic Brosamler formula of linear Neumann boarydvalue problems governed by uniformly
elliptic operators. Although other generalizations aresilde, by simplicity we limit this contribution

to the presence of nonlinear terms exclusively on the baynofathe domain. We emphasize that any
uniforme ellipticity assumption is required in the paper.

1 Introduction

In 1976, G. A. Brosamlerd], investigating the asymptotic behavior of the sample gpathpositive
recurrent diffusions, employed the probabilistic potalttieory establishing a close connection with certain
boundary problems. More precisely, Brosamler proved thatcéassical solution of the Neumann problem

Au(z) =0, x €, )
(Du(z),7i(z)) = g(x), =€,
admits the probabilistic representation
t
u(x) = tlLIEOE/O 9(X)dLs, x €9, (2)

where( is a bounded open set &~ with 92 € C?, g is a continuous function oA satisfying the
compatibility condition/ g(x)do, =0, {X;}i>0 is a Brownian motion with reflection at the boundary
o0
and{L;},>¢ is the boundary local time fdrX; },>o (see bellow for details). Since then these representation
is known as the Brosamler formula. Itis a kind of stationagysion of the Feynmann—Kac formula.
More recently, A. Benchérif-Madani ariel Pardoux, $], have extended the Brosamler formula for the
Neumann boundary problem

— 5T (A(), Du(@)) + {a(e), Vu(@) = f(z), =€,
X ®)

2<A(Vu(x)),ﬁ(x)> = g(z), x € 990.
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So, if 2 is a bounded open set B with 902 € C>*, 0 < o < 1, A € C1*(Q) is a matricial uniformly
elliptic function,a, f € C%(Q) andg € C(99) satisfying the compatibility (or centering) condition

f@)p(x)dz + / g(@)p(x)do, =0,
Q o0

wherep is the solution of the adjoint elliptic problem a3)( it is proved in p] that any classical solution
of (3) can be probabilistically represented by the formula

u(z) = lim UotEf(Xs)dtJr/otEg(Xs)dLs}, z €. (4)

Here{X}}.>¢ is the diffusion process involved to the PDE 8f (ith reflection at the boundary addl; } ;>
is the boundary local time fofX; },>0 (again see bellow for details).

Our main goal in the paper is to show that a Brosamler fornsudso available whenever the uniform
ellipticity is not required on boundary value problems witnlinear Neumann condition. It is is strongly
motivated by reasoning close to Stochastic Optimal Cothery (seeJ],[14], [25]). In order to simplify,
we present the ideas on a king of one-control case, but theyeaextended to more general control
problems. So, we conside®&>> open bounded s€t ¢ RN, N > 1, whose unit outward normal vector
is7i(x) at eache € 02. Then, theoutward oblique direction§(z) are continuous functions a¥f2, given
by the property

(i), (@) >0, @) =1, zecdq.

We also consider two functions
a:RYN - RY and o:RY — M(N x M;R),

satisfying
|h(z) — h(z)| < Clz — 2’|, =z,2’ € RN, )
h(z)] < C, = €RN,
for some positive constan€s, with
h=a, o.

On the other hand, on a probability spa@@, 7,P) we consider a M-dimensional Brownian Motion
{B.}+>0 and the relativédiltration, {F; };>0 C F, involved to{5,}:>¢. In this probabilistic framework, we
construct theskorohod problem

dxy = —a(X?)dt + o (XF)dBy — F(XT)dLE, t >0, )
Ay =zeq,

where the boundary local time f@/& },>¢ is given by

xT : 1 ! xT H
L = (%2_5/0 o, (X7)ds, Q5= {ye€Q: dist(y,0) < o}. )

We send 18] or [20] for some properties of this proce$&f },>. In [16] one proves the existence and
unigueness of the solutions @)( In a rough sense the solutions atechastic trajectorieseflecting in
coming the boundarg( to inside2. Next, for every couple of bounded Lipschitz continuouschion
f: Q—=R, g: 002 — R we construct

wr =] [ sy e (- [ an(xr)as)
+/Ooog(2(tr) exp (— /01t ao (X7 )ds — /01t cO(X;”)dLg) de} z e

We note that since reflections hold, thirst exit timeof the trajectoryX from Q of RN verifies

(8)

7, =inf{t > 0: X" € Q} = o0.
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In Remarksl and7 one explains the terms o) from the Stochastic Optimal Control theory point of view
(see also9],[14], [25]).

Classical arguments (se&] or [20]) lead to thinku as being a solution of a partial differential equation
and a kind of Neumann boundary condition

B(x,u, Du) =0 onQ, (9)
involving 4, ¢y andg. Indeed, it is proved that verifies, in some sense to be precised, the equation
Lu+agu=f inQ (20)

where .
Lu = —§Tr (A-D?u) + (a,Du).

HereA = oo! ando? is the transpose matrix of.

Certainly, some assumptions on the data must be requiredier o prove that: satisfies {0)—(9) in
a classical sense. An almost “unavoidable” hypothesidifat goal is thanon-degeneracygf the diffusion:
o(-) must be aN x N matrix with o(-) > 0y, for somed > 0 on Q. Unfortunately, the condition does
not hold in some important examples of the applications amtsequently the regularity the functian
can not be guaranteed. The viscosity solution notion is aaleqn order to remove theon-degeneracy
hypothesis. We send the monograph by M. G. Crandall, M. Gshii &nd P. L. Lions ] to understand
how semi-continuous functions can solNig) in that framework. We note that linearity of the operafor
can be lost for this kind of solutions. From now on, sometimveswill drop the term viscosity which is an
artifact of the origin of this theory motivated by the comsigy of the notion with the method of vanishing
viscosity, mainly for first order equations. Therefore wier¢o viscosity sub-, super- and solutions as sub-,
super- and solutions, respectively.

The possible non regularity interferes strongly with thadition (9). Furthermore, one may construct
examples in whichu is continuous orf2 but (9) does not hold (see the ideas d@f jor [13)). This is
the reason for which9) is generalized to a boundary condition where from the @mioint of view the
possible behaviors of the dynamical system and the straiétlye controller must be considered. The
relaxed Neumann boundary conditicen®

min {Eu + aou — f,B(z, u, Du)} <0 onof (12)

and
max{ﬁu + agu — f,B(x,u,Du)} >0 onof (12)

in the viscosity sense. Conditiornkl) and (L2) arise when we pass to limit smooth solutions of the claksica
Neumann boundary value problem in tvenishing viscosity methddee [/] for an introduction of the so—
called half-relaxed limits methgd Roughly, these relaxed conditions mean that the PDE hgids the
boundary if @) does not hold in the ordinary viscosity sense. In this noeédtoundary operator considered
is

B(z,7,p) = (p.7(@)) + co(@)|r[*'r = g(2), (z,7,p) €AXRXRY, (m>1), (13)

that satisfies thebliqueness
B(z,r,p +nii(x)) = B(x, 5,p) = n{ii(x), 7(x)) + co(a) (|r["~r —|s|™ " s), (14)

very useful in uniqueness results, provided 0, ¢o(z) > 0. In fact, this assumption enables to prove that
relaxed Neumann boundary conditidmecome®rdinary Neumann boundary conditio(see the comments
in Remarké below).

So that, our interest here is to prove tha} provides the Brosamler formula to tideumann value
boundary problentorresponding to

Lu+ agu = f in Q,
(Du, ) 4+ cou =g onq.
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We note that this boundary condition coincides witl)(for m = 1. In Section3 we prove that) is, in
fact, the unique continuous solution whenever

the dateo, a, ag, cg, f andg satisfy 6) in their arguments and, > 0, ¢y > 0. (15)

hold (see Theorer@below). We emphasize that = oot is the simple structural assumption needed on the
leading part ofC (see Remarl8 below) and no uniformly elliptic assumption is requiredle {paper. The
proof uses an approach by means of solutions in the wholesgziained in the Sectidh The uniqueness
is based on the obliquenessy (see [L]). Certainly, complementary regularity for solutions arailable
under more strict conditions on the data. In particularf &swell known, classical solutions are obtained
if we assume thaf is uniformly elliptic operator (see, for instancé,1l] Theorem 6.31] or17]).

In Sectiond one studies the implicit Brosamler formula

u() = E [/Ow F(X7) exp (_ /Ot ao(x;)ds) dt
+ /0 7 g(x7) exp <_ /O " ao(x)ds - /O t CO(X;)\u(x;)\mldLg) de}

for 2 € Q, of the nonlinear boundary problem

(16)

Lu+ agu = f in Q,
(Vu,7) +colul™u =g onow,

wherem > 1. By means of a Fixed Point Theorem it is proved theg) (is a solution (see Theoreth
below). In fact, since the boundary condition is governed18) for m > 1, (16) is the unique continuous
solution. Other extensions, including non linearitieshia interior operator or on the boundary operator are
available, but they are not considered in this note.

One final word, in order to simplify the exposition, we omité¢he study of complementary regularity
based on the PDE theory. For this topic we refer, for instajgde[11] or [25)].

2 The problem in the whole space

Given
a:RY - RY and o:RY — M(N x M;R),

functions satisfying¥), we may consider the unique, in the probability sense,tsolwof the stochastic
differential equation

dxP = —a(X7)dt +o(X7)dBy, t>0,
(SDE) { Xy =z e RN,

(see, for instance 1] for details). Given any couple of continuous functions
f, ap : RN 5 R,
one defines - ,
u(z) =E UO f(Xe) exp (—/O ao(xg)ds) dt} , zeRN 17
provided thatf is bounded.

Remark 1 Inaframework close to Control Theory, the functigfx) is the optimal value of an one-control
problem wherg‘(?(f) denotes th@ayment per time unénd

exp (_ /0 t ao(x;)ds)

anactualization term O
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In order to characterize the functianve employ a classical argument

Proposition 1 (Dynamics Programming Principle) For everyt > 0 andx € RY one satisfies

u(@) = E [ / f(A7) exp (_ / 4o (X,i”)dr) ds + u(X7) exp (_ / Cao (x;)ds>] @)

a

Remark 2 Propertyl18is the mathematical expression of the well-knoeuristic principleintroduced
by R. Bellman. o

From assumptions we have
—00 < uy(r) < ulz) <u*(x) < +oo, xRN,

whereu,., respectively.*, is the lower semi-continuous, respectively upper semiinoous, envelop of.
Next we argue as ir2] or [8]. For some fix and arbitrary point, € RN we considerp € C2(RN) such
that

(w" = @)(@0) 2 (u* — p)(x), =R

Replacingy by
P(z) = p(x) + (u" — ) (o) + |z — zo|?

if necessary, we may assume
0= (u"—p)(x0) > (u" —p)(x), ze€R".

If {z.}. C RN satisfies
{z} = 29, ase —>0
u(ze) = u*(xg), ase— 0.
we construct thauxiliar time
t? = |u(ze) — o(ze)|,

for which
p(xe) = u(ze) + ofte).
So,
() <E [/OtE f(XF) exp (— /OS ao (Xf)dr) ds + ¢ (X)) exp (— /OtE ao (Xff)ds)] + o(t)

(19)
(see (8)). Regularity ofp enables us to apply Ito’s Rule to

(1) = (A7) exp (_ /0 "o (x;)ds>

and to obtain

d®(t) = exp (— /Ot ao(Xff)ds> {[—ao(A7) (X)) — Lo(X7=)]dt
+(o (A7) dB, Vo (X))}

for the operator

N
Lo(y) = —%Tr (A(y) - D¢(y)) + (ay). De(y)),  Aij(y) = ouy)o(y), 1<i,j <N.
=1



6 G. Diaz

Then we get to

E [go(ng) exp (— /0 - ao(Xge)ds)]
= (2 )+E [ /0 " e (_ /O | ao(;cfa)dr) < (A7) (A7) Ego()(ff))dt]

and from (L9)

ofte) < [f(x2) — ao(ze)p(a:) — Lo(x:)|E {1 — exp (—ao(xg)tg)].

ap(xe)

Lettinge — 0 we conclude
Lo(xo) + ao(wo)u™(z0) < f(zo).
By an analogous reasoning one provesithig also a super-solution, therefore one concludes

Theorem 1 Under the assumptiofb), for a, o anda the functionu, given in(17), is a solution of

Lu+apu=f inRN, o

Remark 3 Since

2 ¢2 2 ¢2 N N
Tii +05E; 5 2
OikOkiS =~ = Z oik0jk&i&j = —Zgikfi,
ij=1 i=1
1<J
M
the covariance matrix4;; = Z oik0jk, IS elliptic possibly degenerafeé.e.
k=1

(A, €) >0, ¢eRN.

Moreover, fromo # 0 it verifies
Tr A >0,

we say then thati(-) is elliptic quasi non—degenerat©n the other hand, giveA the property of to find
someo : RN — M(N x M;R) Lipschitz continuous functions solving

A= oot

fails, in general, for any Lipschitz continuous positivensedefinite symmetric matricial functiad. How-
ever, we may consider the technicalitg:c W2 implies thaty/.A is uniformly Lipschitz continuoysee
[10] for some results of the factorization of non—negative defimatrices). o

Complementary regularity on the solutiarwhenevel is uniformly elliptic can be obtained (se&q),
but, as it was pointed out in Introduction, by simplicity wenio here the study of regularity based on the
PDE theory. However, we provide two illustrative resultsigkd directly from the construction ofiL().
First, we use the notatiom; in studying the dependence on the data of the funectiogiven in (L7). So,
we have

Proposition 2 Assumed the condition
ap(r) > A >0, zeRN, (20)

one has

up(z) < %, z € RN,
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PrROOF By definition one has

ug(z) < ||f||oo/ exp(—At)dt < %, x e RN, 5
0

Therefore, it follows

ur@) —usle) <17 =l [ exp-anar < LT,
whence N
luy = uglleo < w T ERY (1)
holds. The second one is
Theorem 2 Assume
|Da(x) — Da(Z)| + |Do(x) — Do(z)| < Clz — Z|, =, 2 € RN, (22)

for some positive constant. If f is semi-concavéespectively semi-convethe functionu, given in(17),
is also semi-concav@espectively semi-convex

PROOF. We recall that a functiony : RN — R is semi-concave if: — (z) — K|z|? is concave for
some positive constarit. Consequently, by straightforward computatignis semi-concave if and only if

() + (1= pp(y) — (pe + (1 — py) < Kp(l—p)lz -y, z,yeRY, 0<p<1.

On the other hand) : RN — R is semi-convex if-1 is semi-concave. We only study the semi-concave
case. In order to simplify we will assumg(-) = \. Letz;,z2 € RN and0 < p < 1 and we denote
x, = pxe + (1 — p)xr. Then

pu(ze) + (1 — pu(zr) —u(z,) = E [/000 f (X72) exp(—At)dt + /000(1 — 1) f (X exp(—At)dt
- /OO fF(x™) exp(—/\t)dt} .
0
Denoting

X' = pX + (1= p)x7
one has from assumptions

pue) + (L puler) = ule) < K= | [ 120 = 2 P exp(-aar

+E [ /0 h fx) = (™) exp(—/\t)dt]

< %Iu(l — )|z — I2|2 + KE {/ |xt — th“‘exp(—)\t)dt}
0

(23)
(hereK is a generic positive constant). On the other hand, it fadlow
jpa(ez) + (1= pa(er) —a(@,)| = |u(al) - a(r) + (1~ p)(az) — )|
< u(t=ml([ (Dala,+ 001~ Wiz — o))

0
—Da(:z:# + Ou(xy — J:Q)))dG, Ty — x1>|
Kp(l = p)zy — o,

IN

Analogously, one proves

o (@2) + (1 — wo(a1) - ola,)| < Kp(l - )|y — ]
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By using on thestochastic differential equatiofsDE) the Burkholder—Davis—Gundy inequality (sele3[
Theorem 3.28]) we obtain

E Tsug) X — x |1 < KE Til[lfﬂ /ST (pa(Xx??) + (1 — pa(x™) —a(x*)dr 21
+KE_2?%‘/T@qu)—a@mm»d71
<1 [ [ ot 0 - wrotr) —oteeas,|
+KE _2?%]L/W(U(kf)——o(Afw))dBTQ]

< Kp*(1—p)’E U ]sz—Xf1\4dr]+KE [/ \Xﬁ—Xfu‘sz}

< Kp?(1 - u)2|:171 - x2|4 + 2K/ E “Xf - Xf“|2} dr,

S

therefore by Gronwall inequality one has

E[?uﬁ)‘Xtﬂ—XtMH SK/L(I—‘LL)‘Il—IQF. (24)
s,t

Finally, (23) and @4) conclude the result. o

Remark 4 ltis clear that the semi-concavity (respectively semivexity) implies

2
% > (respectively<) K inD/(RY) forall y, |x|?> = 1.
X
The above proof follows argument df, Proposition 4.4.5]. o

3 The linear problem

There are many way to study the behavior of the reflection tieaboundary (see, for instancé?],
[18],[19], [2]] or [23] ). Here we will employ the domain penalty method (s&jedfr [16] for sharp details).
So, assumingl(), for everyd > 0 to be sending 0, we consider the equation in the whole space

1
AX)" = —a( X )dt + o (X7 )dB, — < (X)W )dt, >0,
X3% =z €RY,
wherey is aW? extension of the function di&t-, Q) to RN, verifying
(Veo(z),7(z)) >0, xeRY,

for Lipschitz extensions of the dat@, f, co, gy 7 to the whole spacBN satisfying ). In [3, Section 3]
one proves the convergence in law{ot’""},~ to the unique solutio§. X}~ of

dxXy = —a(XF)dt + o(XF)dB, — ¥(XF)dLy, t >0,
Xy =xeQ,
The proof uses the property

limsup E, /[ XY — Xty,H =z —2'|, z,2 € Q, (25)

(y,y") = (x,2')
§—=0

therefore a better convergence holds.
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Remark 5 Really, in [3] the reflection term of the stochastic differential equatis denoted by other
way. o

Next, we consider an extensigne C*(RYN) of the functiondist(z, 2) for which

3

o(z) dist*(z, Q)

5 )

Y(z)  dist(z,Q)
5 5

Then we construct the functions

for dist(z,ﬁ) < 4.

that verify
fs(z) = f(z
as(z) = ao
independent on. Finally, we introduce

us(x) =E [/00 f(;(Xté’m) exp (— /lt a(;(XS‘;’I)dS> dt} , z€RY, (26)
0 0
for which

us(z) =E [/Ot f5 (X27) exp (— /0 a(;(?(f’w)dr> ds + us (X)) exp (— /Ot a(;(Xf’””)dt)} . 27)

holds fort > 0 andz € RN, as in Propositiorl below. So that, the interior reasoning of Theoréfeads
to

Proposition 3 Under assumptions on the data, for evéry> 0, the functionus, given by(26), is a

solution of

1 .
—§TI‘ (A . D2U5) + (a(;, VU5> + asus = fs In RN, 0O

Certainly,us is bounded of2, uniformly in 6. Therefore we may construct the functions

w(z) = liminf  wus(ys),
vp e, ya€RY 5
u(x) = limsup wugs(ys), z €, (28)

yaﬁg;}yg RN
moreover is lower semi—continuous andis upper semi—continuous and obvious inequality
u(z) <u(z), wew,
holds. Next, we prove that, in fact, they coincide in a cambims weak solution providing the Brosamler
formula

Theorem 3 Under assumptioifl5), the functionu given in(8) is the unique continuous solution of the
problem
Lu+au = f in Q,
{ (Vu,5) +cou — g ondQ. (29)
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PrROOF.  First of all we note that from limit operations (se8)[the functionsu(x) andu(x) are sub- and
super-solutions, respectively, of
Lu+agd = f in€Q.

On the other hand, givelp, Z) € J%Jrﬂ(:vo), zo € 012, andd > 0 there exists; € RN and

(p57 Zé) S j£7+u(§($§),

such that
{ (25, us(xs5),ps, Z5) b5 — (w0, U(x0),p, Z) @sd — 0

(see [, Lemma 6.1 and Proposition 4.3]). Moreover, with no losserigrality, we may assume

Ts = xo + (ﬁﬁ(xo).
Then
Vdist(zg, Q) = 7i(x0),

and _

dist(z, Q) = (7i(xo), z — zo) + o(|x — x0])
imply

. 4

plr) _ ((7i(o). & — o)) + olz — zo)) for § small enough.
1) 1) é
Hence
(w0 + 817i(x0)) = 8 _
lim 5 = |fi(z0)|” =1

shows

lim as(zs) = a(xo) + Y(x0).
0—0

Analogously, reasoning with
x5 = xo + 07(x0),

it follows, from

Y(x) _ (ii(x0), T — 7o) n o(|lz — xol)

5= 5 5 for 6 small enough

the properties

lim w — Jfizo)? = 1,
lim f5(z5) = f (o) + g(z0);

lim as(xs) = ao(xo) + co(zo).
0—0

So that,
1 .
—§Tr (.A . D2u<;) + (as, Vus) + asus < fs in RN,

leads to

[— %Tr (A-D*n) + (a, Vu) +aoﬂ—f} + [(Vﬂ,w +coﬂ—g] <0 onQ,

in the viscosity sense, because

lim inf (—%Tr (Alzs) - 25) + (as(5), ps) + as(xs)us(as) — f5(xs)

6—0

)
= [~ 370 (o) 2) + (alao). ) + an(eiteo) — an)| + [ (7o) + o) gt
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So, it proves that is a relaxed sub-solution 029). A similar reasoning enables us to obtain
1 —
—§Tr(A-D2y)+<a,Vg)+aoy—f}+[(V@ﬁ,>+cog—g >0 onQ

that, now, proves that is a relaxed super-solution at9). Moreover, since the boundary operator

B(z,r,p) = (p,7(x)) + co(z)r — g(x)

satisfies the obliqueness4) for m = 1, one concludes

u(z) <u(z), =€
(see [, Theorem 2.2]), thusy(z) = u(z) = u(z), = € Q, is a continuous solution o2). In fact, it is the

unigue solution ofZ9) (see [L, Theorem 2.2]). Finally, the convergence in Iavv{dff’m}tzo to the unique
solution{X;* },>0 and the regularity of the data implies that the functiois given by the formulag). o

Remark 6 In order to understand the relaxed Neumann boundary condi{isee 11) and (L2)) a main
guestion arises. How the equation holds on the boundary® @athors have studied the question. See, for
instance, ] or [7]. Essentially, ifu — ¢ attains a local maximum at someg € 912, as we consider for the
viscosity sub-solutions, the same holds fior ¢ — w(dist(-, 8(2)) whenever) is a smooth function and
1(0) = 0. Then the regularity of the boundad¥? and suitable obliqueness enable to construct a sharp test
function for which

min{Lu + apu — f,B(z,u,Du)} <0 ondQ

becomes
B(z,u,Du) <0 ondf.

In an analogous way, for super-solutions one may constrsicagp test function for which
max{Lu + apu — f,B(z,u,Du)} >0 0ondQ

becomes
B(z,u,Du) >0 onodQ

i.e. therelaxed Neumann boundary conditibacomes
B(z,u,Du) =0 onof),

in the ordinary viscosity sense. We senfifpr details. We also note that if the boundary operator gase
Dirichlet boundary conditions

B(z,r,p) =1 —g(x) onds),

the relative relaxed Dirichlet boundary condition becotimesordinary Dirichlet boundary condition under
a simple and well known assumptiotiite boundary)$? must consist of regular boundary poings it was
proved, for instance, ir?], [8], [10] or [24]. o

Remark 7 Inthe Brosamler formulag) we can understand that theundary paymeritecomes less active
with time guided by the cumulative rate

exp (— /Ot ao(X7)ds — /Ot co(Xs””)dLi)

per unit time according to there were reflections produced on the boynddil the process “died near to
the boundary”, after of a possibly infinite number of reflens. o

Here, we end with an application of Theor@no be used in certain estimate of the next section.
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Proposition 4  LetH}),, be the relaxed solution of the boundary value problem

LH), + H), = 0 inQ,
A (30)
Then, we have the representation
H)o(z) = E [/ exp(—/\t)de} >0, z€Q g (31)
0

Remark 8 Wheneverc is uniformly elliptic, existence, uniqueness and regtyaoi function Hy,, also
follows from [15, Theorem I.1] and the positivity can be obtained by usingftédprinciple (see 11]). We
note that in any case

A= Hzg()

is a decreasing and convex map. We also note that the boreledse
Hyq(z) =E Lli)fgo Lf} >0, zef
is a solution of

LH), = 0 inQ,
(VHDg,7) 1 onos.

Complementary regularity derived directly from the Brosamnformula can be obtained as in Sectibn

4 The nonlinear boundary problem
In this section we will assume the conditiattf as well as: (x) > 0, for which we will use the notation
ap(z) >A>0,z€Q, and co(x) > 0> 0, z € 90. (32)
In what follows we are going to study the dependenceumulative actualization

exp (— /Ot ao (X7)ds — /Ot co(X:)yv(Xg)]m‘ldL;E)
form > 1 andv € C(Q2). More precisely, let us consider the application
To(@) = E [/Ow F(X7) exp (_ /Ot ao(x;)ds> dt
+ /0 " g(A7) exp <_ /O a0 (A7)ds — /O o (X) |o(2) \mldL:) de}

for 2 € Q. Again Theoren8 implies that7 v is the unique solution of the boundary value problem

(33)

LTv+aTv =f in Q
(VTv,7) + colv|" " Tv =g on of.

Our aim is clearshow the existence of a fixed point
Tu(z) =u(x), €.

Straightforward computations on the definition 88) lead to

—+oo [e's]
|Tv(z)| < sup |f|/ exp(—At)dt + sup |g|E, [/ exp(—/\t)de} , T €Q,
[9) 0 a0 0
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whence 81) derives the estimate
1 —
[To(@)| < 5 sup|f| +suplg|H3g(2), = €0, (34)
Q a0

where the functioiil), was introduced in Propositioh That estimate gives the inclusion

T (@) € Br(0) C (@),
for )
R = 3, Sup |f] + sup |g| sup [H3q|.
rol o Q
The existence of a point fixed is now obtained through coitiraf application7 .
Theorem 4 Let us assume the conditio(i5) and (32). Then, form > 1 the mapping33) is uniformly
continuous. As consequence, there exists a funetier€ (£2), such that
1
lulle <~ gp|f|+sup|glsup|HaQ|
Q o0
Tu=u inC(Q),

given by the implicit Brosamler formul@6). Moreover,u is the unique solution of the boundary value
problem

Lu+ agu = f in Q,
(Vu,3) + colu|™ tu=g  ono.

PROOF. Letw, o € C(Q2) be two arbitrary functions. Then, for eache ) the inequality

[e%s} t
(Tv—T0)(xz) < psup |g|E [/ exp (—At) </ |U(X;”)|m to (X”” ‘sz) sz}
o0 0 0
holds. Moreover, from definition
Ly = (%13%2—5/0 g, (XS )ds,
given0 < ¢ < 1 there exist9., small enough, such that
¢ 1/t t
dL? =17 < — | g (XF)ds <14 —
[z =< e g o (a)ds < 14 g

whence

(Tv—To) (z) < <ps61§ Ig|E [/OOO exp (—At) dLE + % /OOO texp (— ) deD Hin(v,3),  (35)

where
Cmllv — 9™~ 1, if 1l <m <2,

Hm(’U”O) - { m—1 A m—1y 2=2 ~ H
Con([[o™ 7+ ([ == o =2, i 2 <m.

whered. andC,, are two positive constants independenbvandd (see B88) in the Appendix below). From
the convexity

(36)

A Hé\sz(')

(see the RemarR) we obtain the inequality

0

HYq (z) — Hyqg(z) > —/\aHgg(a@) = \E UO texp (—=At)dLy| >0, z€Q.
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Finally, previous arguments lead to

. 1 .
(Tv—=T%)(x) < psup |g|sup (Hgsz + 5 Hoo — Hgsﬂ) Hn(v,0), z€Q,
0 a 2)6.

that proves the uniform continuity of the mapping
T:C(Q) —C(Q)
(see the definition of,, in (36)). So that, from
T (Br(0)) € Bgr(0), Bg(0)cC(Q),
with )
R = 3 Sup | £ + sup |g| sup [H3q|
Q oQ Q

we obtain, through an extension of the Brouwer Fixed Poirgdfam (seell, Theorem 11.1]), the exis-
tence of dixed point
u € Br(0), Tu=u.

Definition of mapping/” enables us to obtain the representation formlUga#nd to prove that is a solution
of the boundary value problem. On the other hand, since thadsry condition

B(z,r,p) = (p,7(x)) + co(@)|r|™tr — g(x), (2,7,p) €A xR xRY,
satisfies the obliqueness4), the functionu is the unique continuous solution. o
Remark 9 Theoren¥ also holds for the problem

Lu+ agu = f in Q,
(Vu,7) + co¥(u)u = g onof.

assumed that for ead!i > 0
= U(r), lr| <M,

is a positive uniform continuous function. Here the relatBrosamler formula is given by

o] t
u(z)=E {/ f(XF) exp <—/ ao(Xf)ds) dt
0 0
0 t t
+ / 9(X7) exp (_ / a0 (A7) ds / co(Xf)\I/(u(X:))dL?) de],
0 0 0
for 2 € Q. Moreover, ifr¥ (r) is nondecreasing the boundary operator satisfies the @llegas

B(z,r,p +nii(x)) — B(x, s,p) = nii(x),7(x)) + co(x) (¥ (r)r — ¥(s)s).

Therefore the function is, in fact, the unique solution of the boundary problem. o

5 Appendix. On a technical inequality
In [22] one proves the inequality

Cplo — 0P, if 2 < p,
(0P=20 — |6]>=20,0 — 0) > O
" (10 + 18)*

. ~ (37)
if1<p<2 |0 +6£0
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whereC,, is positive constant depending on p. For the chéice |¢|™~!, b= |§A|m*1 and(p — 1)(m —
1) = 1, inequality 37) becomes

Cll[™=1 = [E™-1 =", ifm<2,
(€] =[], le[™t = €™y > m—1 _ |Fim-1|2 | R
O ] Jg' |_ if 2 <m, [¢] +[¢] #0.
(|§|m—1 + |§|m—1)HH

For the casen < 2 one has

m—1

et — @t < Ol et - )
_ |£ym—1 _ R
Cr:ll (M 4 oemot m_1‘|§|m—1 _ |§|m—l’> ’

A

IN

me™ m
by using Cauchy inequality. Then fersmall enough we derives
Cul¢ — "7, if m < 2,

Con(JEm 1+ [Em D)7 e =], f2<m,

(the case < m follows by straightforward computations).

(38)

“ﬂmfl _ |é’-\|mfl‘ < {
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