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Abstract
This note concerns with boundary value problems as

{

Lu+ a0u = f in Ω,
〈∇u,~γ〉+ c0|u|

m−1
u = g on∂Ω,

whereL is an elliptic possibly degenerate second order operator,a0, c0 are positive function,~γ is an
oblique exterior vectorandm ≥ 1. By means of some arguments close to the Dynamics Programming
we prove that the viscosity solution admits arepresentation formulathat can be considered as an extension
of probabilistic Brosamler formula of linear Neumann boundary value problems governed by uniformly
elliptic operators. Although other generalizations are possible, by simplicity we limit this contribution
to the presence of nonlinear terms exclusively on the boundary of the domain. We emphasize that any
uniforme ellipticity assumption is required in the paper.

1 Introduction

In 1976, G. A. Brosamler [6], investigating the asymptotic behavior of the sample paths of positive
recurrent diffusions, employed the probabilistic potential theory establishing a close connection with certain
boundary problems. More precisely, Brosamler proved that any classical solution of the Neumann problem

{
∆u(x) = 0, x ∈ Ω,

〈Du(x), ~n(x)〉 = g(x), x ∈ ∂Ω,
(1)

admits the probabilistic representation

u(x) = lim
t→∞

E

∫ t

0

g
(
Xs

)
dLs, x ∈ Ω, (2)

whereΩ is a bounded open set ofRN with ∂Ω ∈ C3, g is a continuous function on∂Ω satisfying the

compatibility condition
∫

∂Ω

g(x)dσx = 0, {Xt}t≥0 is a Brownian motion with reflection at the boundary

and{Lt}t≥0 is the boundary local time for{Xt}t≥0 (see bellow for details). Since then these representation
is known as the Brosamler formula. It is a kind of stationary version of the Feynmann–Kac formula.

More recently, A. Benchérif-Madani and̀E. Pardoux, [5], have extended the Brosamler formula for the
Neumann boundary problem





−1

2
Tr
(
A(x),D2u(x)

)
+ 〈a(x),∇u(x)〉 = f(x), x ∈ Ω,

1

2
〈A
(
∇u(x)

)
, ~n(x)〉 = g(x), x ∈ ∂Ω.

(3)
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2 G. Dı́az

So, ifΩ is a bounded open set ofRN with ∂Ω ∈ C2,α, 0 < α < 1, A ∈ C1,α(Ω) is a matricial uniformly
elliptic function,a, f ∈ C0,α(Ω) andg ∈ C(∂Ω) satisfying the compatibility (or centering) condition

∫

Ω

f(x)p(x)dx +

∫

∂Ω

g(x)p(x)dσx = 0,

wherep is the solution of the adjoint elliptic problem of (3), it is proved in [5] that any classical solution
of (3) can be probabilistically represented by the formula

u(x) = lim
t→∞

[∫ t

0

Ef
(
Xs

)
dt+

∫ t

0

Eg
(
Xs

)
dLs

]
, x ∈ Ω. (4)

Here{Xt}t≥0 is the diffusion process involved to the PDE of (3) with reflection at the boundary and{Lt}t≥0

is the boundary local time for{Xt}t≥0 (again see bellow for details).
Our main goal in the paper is to show that a Brosamler formula is also available whenever the uniform

ellipticity is not required on boundary value problems withnonlinear Neumann condition. It is is strongly
motivated by reasoning close to Stochastic Optimal Controltheory (see [9],[14], [25]). In order to simplify,
we present the ideas on a king of one-control case, but they can be extended to more general control
problems. So, we consider aW3,∞ open bounded setΩ ⊂ R

N, N ≥ 1, whose unit outward normal vector
is ~n(x) at eachx ∈ ∂Ω. Then, theoutward oblique directions~γ(x) are continuous functions on∂Ω, given
by the property

〈~n(x), ~γ(x)〉 > 0, |~γ(x)| = 1, x ∈ ∂Ω.

We also consider two functions

a : RN → R
N and σ : RN → M(N×M;R),

satisfying {
|h(x) − h(x′)| ≤ C|x− x′|, x, x′ ∈ R

N,

|h(x)| ≤ C, x ∈ R
N,

(5)

for some positive constantsC, with
h = a, σ.

On the other hand, on a probability space(O,F ,P) we consider a M-dimensional Brownian Motion
{Bt}t≥0 and the relativefiltration, {Ft}t≥0 ⊂ F , involved to{Bt}t≥0. In this probabilistic framework, we
construct theSkorohod problem

{
dX x

t = −a
(
X x

t

)
dt+ σ

(
X x

t

)
dBt − ~γ(X x

s )dL
x
s , t > 0,

X x
0 = x ∈ Ω,

(6)

where the boundary local time for{X x
t }t≥0 is given by

Lx
t = lim

δ→0

1

2δ

∫ t

0

1IΩδ

(
X x

s

)
ds, Ωδ = {y ∈ Ω : dist(y, ∂Ω) < δ}. (7)

We send [18] or [20] for some properties of this process{Lx
t }t≥0. In [16] one proves the existence and

uniqueness of the solutions of (6). In a rough sense the solutions arestochastic trajectoriesreflecting in
coming the boundary∂Ω to insideΩ. Next, for every couple of bounded Lipschitz continuous function
f : Ω → R, g : ∂Ω → R we construct

u(x) = E

[∫ ∞

0

f
(
X x

t

)
exp

(
−
∫ t

0

a0
(
X x

s

)
ds

)
dt

+

∫ ∞

0

g
(
X x

t

)
exp

(
−
∫ t

0

a0
(
X x

s

)
ds−

∫ t

0

c0
(
X x

s

)
dLx

s

)
dLx

t

]
, x ∈ Ω.

(8)

We note that since reflections hold, thefirst exit timeof the trajectoryX x
t fromΩ of RN verifies

τx
.
= inf{t ≥ 0 : X x

t 6∈ Ω} = ∞.
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In Remarks1 and7 one explains the terms of (8) from the Stochastic Optimal Control theory point of view
(see also [9],[14], [25]).

Classical arguments (see [12] or [20]) lead to thinku as being a solution of a partial differential equation
and a kind of Neumann boundary condition

B
(
x, u,Du

)
= 0 onΩ, (9)

involving~γ, c0 andg. Indeed, it is proved thatu verifies, in some sense to be precised, the equation

Lu+ a0u = f in Ω (10)

where

Lu .
= −1

2
Tr
(
A ·D2u

)
+ 〈a,Du〉.

HereA .
= σσt andσt is the transpose matrix ofσ.

Certainly, some assumptions on the data must be required in order to prove thatu satisfies (10)–(9) in
a classical sense. An almost “unavoidable” hypothesis for that goal is thenon-degeneracyof the diffusion:
σ(·) must be aN × N matrix with σ(·) ≥ θIN, for someθ > 0 on Ω. Unfortunately, the condition does
not hold in some important examples of the applications and consequently the regularity the functionu
can not be guaranteed. The viscosity solution notion is adequate in order to remove thenon-degeneracy
hypothesis. We send the monograph by M. G. Crandall, M. G, H. Ishii and P. L. Lions [7] to understand
how semi-continuous functions can solve (10) in that framework. We note that linearity of the operatorL
can be lost for this kind of solutions. From now on, sometimeswe will drop the term viscosity which is an
artifact of the origin of this theory motivated by the consistency of the notion with the method of vanishing
viscosity, mainly for first order equations. Therefore we refer to viscosity sub-, super- and solutions as sub-,
super- and solutions, respectively.

The possible non regularity interferes strongly with the condition (9). Furthermore, one may construct
examples in whichu is continuous onΩ but (9) does not hold (see the ideas of [4] or [13]). This is
the reason for which (9) is generalized to a boundary condition where from the control point of view the
possible behaviors of the dynamical system and the strategyof the controller must be considered. The
relaxed Neumann boundary conditionsare

min
{
Lu + a0u− f,B(x, u,Du)

}
≤ 0 on∂Ω (11)

and
max

{
Lu + a0u− f,B(x, u,Du)

}
≥ 0 on∂Ω (12)

in the viscosity sense. Conditions (11) and (12) arise when we pass to limit smooth solutions of the classical
Neumann boundary value problem in thevanishing viscosity method(see [7] for an introduction of the so–
calledhalf–relaxed limits method). Roughly, these relaxed conditions mean that the PDE holdsup to the
boundary if (9) does not hold in the ordinary viscosity sense. In this note the boundary operator considered
is

B(x, r, p) = 〈p,~γ(x)〉+ c0(x)|r|m−1r − g(x), (x, r, p) ∈ Ω× R× R
N, (m ≥ 1), (13)

that satisfies theobliqueness

B(x, r, p+ η~n(x))− B(x, s, p) = η〈~n(x), ~γ(x)〉 + c0(x)
(
|r|m−1r − |s|m−1s

)
, (14)

very useful in uniqueness results, providedη > 0, c0(x) ≥ 0. In fact, this assumption enables to prove that
relaxed Neumann boundary conditionsbecomesordinary Neumann boundary conditions(see the comments
in Remark6 below).

So that, our interest here is to prove that (8) provides the Brosamler formula to theNeumann value
boundary problemcorresponding to

{
Lu+ a0u = f in Ω,
〈Du,~γ〉+ c0u = g onΩ.
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We note that this boundary condition coincides with (13) for m = 1. In Section3 we prove that (8) is, in
fact, the unique continuous solution whenever

the dataσ, a, a0, c0, f andg satisfy (5) in their arguments anda0 > 0, c0 ≥ 0. (15)

hold (see Theorem3 below). We emphasize thatA .
= σσt is the simple structural assumption needed on the

leading part ofL (see Remark3 below) and no uniformly elliptic assumption is required in the paper. The
proof uses an approach by means of solutions in the whole space obtained in the Section2. The uniqueness
is based on the obliqueness (14) (see [1]). Certainly, complementary regularity for solutions areavailable
under more strict conditions on the data. In particular, as it is well known, classical solutions are obtained
if we assume thatL is uniformly elliptic operator (see, for instance, [11, Theorem 6.31] or [17]).

In Section4 one studies the implicit Brosamler formula

u(x) = E

[∫ ∞

0

f
(
X x

t

)
exp

(
−
∫ t

0

a0
(
X x

s

)
ds

)
dt

+

∫ ∞

0

g
(
X x

t

)
exp

(
−
∫ t

0

a0
(
X x

s

)
ds−

∫ t

0

c0
(
X x

s

)∣∣u
(
X x

s

)∣∣m−1
dLx

s

)
dLx

t

]
,

(16)

for x ∈ Ω, of the nonlinear boundary problem
{

Lu + a0u = f in Ω,
〈∇u,~γ〉+ c0|u|m−1u = g on∂Ω,

wherem > 1. By means of a Fixed Point Theorem it is proved that (16) is a solution (see Theorem4
below). In fact, since the boundary condition is governed by(13) for m > 1, (16) is the unique continuous
solution. Other extensions, including non linearities in the interior operator or on the boundary operator are
available, but they are not considered in this note.

One final word, in order to simplify the exposition, we omit here the study of complementary regularity
based on the PDE theory. For this topic we refer, for instance, [9], [11] or [25].

2 The problem in the whole space

Given
a : RN → R

N and σ : RN → M(N×M;R),

functions satisfying (5), we may consider the unique, in the probability sense, solution of thestochastic
differential equation

(SDE)

{
dX x

t = −a
(
X x

t

)
dt+ σ

(
X x

t

)
dBt, t > 0,

X x
0 = x ∈ R

N,

(see, for instance, [18] for details). Given any couple of continuous functions

f, a0 : RN → R,

one defines

u(x) = E

[∫ ∞

0

f
(
Xt

)
exp

(
−
∫ t

0

a0
(
X x

s

)
ds

)
dt

]
, x ∈ R

N (17)

provided thatf is bounded.

Remark 1 In a framework close to Control Theory, the functionu(x) is the optimal value of an one-control
problem wheref

(
X x

t

)
denotes thepayment per time unitand

exp

(
−
∫ t

0

a0
(
X x

s

)
ds

)

anactualization term. 2
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In order to characterize the functionu we employ a classical argument

Proposition 1 (Dynamics Programming Principle) For everyt ≥ 0 andx ∈ R
N one satisfies

u(x) = E

[∫ t

0

f
(
X x

s

)
exp

(
−
∫ s

0

a0
(
X x

r

)
dr

)
ds+ u

(
X x

t

)
exp

(
−
∫ t

0

a0
(
X x

s

)
ds

)]
. (18)

2

Remark 2 Property18 is the mathematical expression of the well-knownheuristic principleintroduced
by R. Bellman. 2

From assumptions we have

−∞ < u∗(x) ≤ u(x) ≤ u∗(x) < +∞, x ∈ R
N,

whereu∗, respectivelyu∗, is the lower semi-continuous, respectively upper semi-continuous, envelop ofu.
Next we argue as in [2] or [8]. For some fix and arbitrary pointx0 ∈ R

N we considerϕ ∈ C2(RN) such
that

(u∗ − ϕ)(x0) ≥ (u∗ − ϕ)(x), x ∈ R
N.

Replacingϕ by
ϕ̂(x) = ϕ(x) + (u∗ − ϕ)(x0) + |x− x0|2

if necessary, we may assume

0 = (u∗ − ϕ)(x0) > (u∗ − ϕ)(x), x ∈ R
N.

If {xε}ε ⊂ R
N satisfies

{xε} → x0, asε→ 0
u(xε) → u∗(x0), asε→ 0.

we construct theauxiliar time
t2ε = |u(xε)− ϕ(xε)|,

for which
ϕ(xε) = u(xε) + o(tε).

So,

ϕ(xε) ≤ E

[∫ tε

0

f
(
X xε

s

)
exp

(
−
∫ s

0

a0
(
X x

r

)
dr

)
ds+ ϕ

(
X xε

tε

)
exp

(
−
∫ tε

0

a0
(
X xε

s

)
ds

)]
+ o(tε)

(19)
(see (18)). Regularity ofϕ enables us to apply Ito’s Rule to

Φ(t) = ϕ
(
X x

t

)
exp

(
−
∫ t

0

a0
(
X x

s

)
ds

)

and to obtain

dΦ(t) = exp

(
−
∫ t

0

a0
(
X xε

s

)
ds

){[
− a0

(
X xε

t

)
ϕ
(
X xε

t

)
− Lϕ

(
X xε

t

)]
dt

+〈σ
(
X xε

t

)
dBt,∇ϕ

(
X xε

t

)
〉
}

for the operator

Lϕ(y) = −1

2
Tr
(
A(y) ·D2ϕ(y)

)
+ 〈a(y),Dϕ(y)〉, Aij(y) =

N∑

l=1

σil(y)σlj(y), 1 ≤ i, j ≤ N.
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Then we get to

E

[
ϕ
(
X xε

tε

)
exp

(
−
∫ tε

0

a0
(
X xε

s

)
ds

)]

= ϕ(xε)+E

[∫ tε

0

exp

(
−
∫ s

0

a0
(
X xε

r

)
dr

)(
− a0

(
X xε

s

)
ϕ
(
X xε

s

)
− Lϕ

(
X xε

t

))
dt

]

and from (19)

o(tε) ≤
[
f(xε)− a0(xε)ϕ(xε)− Lϕ(xε)

]
E

[
1− exp (−a0(xε)tε)

a0(xε)

]
.

Lettingε→ 0 we conclude
Lϕ(x0) + a0(x0)u

∗(x0) ≤ f(x0).

By an analogous reasoning one proves theu is also a super-solution, therefore one concludes

Theorem 1 Under the assumption(5), for a, σ anda0 the functionu, given in(17), is a solution of

Lu+ a0u = f in R
N. 2

Remark 3 Since

σikσjkξiξj ≥ −
σ2
ikξ

2
i + σ2

jkξ
2
j

2
⇒

N∑

i,j=1
i<j

σikσjkξiξj ≥ −
N∑

i=1

σ2
ikξ

2
i ,

the covariance matrix,Aij =

M∑

k=1

σikσjk, is elliptic possibly degenerate, i.e.

〈Aξ, ξ〉 ≥ 0, ξ ∈ R
N.

Moreover, fromσ 6≡ 0 it verifies
TrA > 0,

we say then thatA(·) is elliptic quasi non–degenerate. On the other hand, givenA the property of to find
someσ : RN → M(N×M;R) Lipschitz continuous functions solving

A = σσt

fails, in general, for any Lipschitz continuous positive semi–definite symmetric matricial functionA. How-
ever, we may consider the technicality:A ∈ W2,∞ implies that

√
A is uniformly Lipschitz continuous(see

[10] for some results of the factorization of non–negative definite matrices). 2

Complementary regularity on the solutionuwheneverL is uniformly elliptic can be obtained (see [15]),
but, as it was pointed out in Introduction, by simplicity we omit here the study of regularity based on the
PDE theory. However, we provide two illustrative results derived directly from the construction of (17).
First, we use the notationuf in studying the dependence on the data of the functionu, given in (17). So,
we have

Proposition 2 Assumed the condition

a0(x) ≥ λ > 0, x ∈ R
N, (20)

one has

uf (x) ≤
‖f‖∞
λ

, x ∈ R
N.
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PROOF. By definition one has

uf (x) ≤ ‖f‖∞
∫ ∞

0

exp(−λt)dt ≤ ‖f‖∞
λ

, x ∈ R
N.

2

Therefore, it follows

uf (x)− u
f̂
(x) ≤ ‖f − f̂‖∞

∫ ∞

0

exp(−λt)dt ≤ ‖f − f̂‖∞
λ

,

whence

‖uf − u
f̂
‖∞ ≤ ‖f − f̂‖∞

λ
, x ∈ R

N (21)

holds. The second one is

Theorem 2 Assume

|Da(x) −Da(x̂)|+ |Dσ(x) −Dσ(x̂)| ≤ C|x − x̂|, x, x̂ ∈ R
N, (22)

for some positive constantC. If f is semi-concave(respectively semi-convex) the functionu, given in(17),
is also semi-concave(respectively semi-convex).

PROOF. We recall that a functionψ : R
N → R is semi-concave ifx 7→ ψ(x) − K|x|2 is concave for

some positive constantK. Consequently, by straightforward computationsψ is semi-concave if and only if

µψ(x) + (1− µ)ψ(y)− ψ(µx+ (1− µ)y) ≤ Kµ(1− µ)|x − y|2, x, y ∈ R
N, 0 < µ < 1.

On the other hand,ψ : R
N → R is semi-convex if−ψ is semi-concave. We only study the semi-concave

case. In order to simplify we will assumea0(·) ≡ λ. Let x1, x2 ∈ R
N and0 < µ < 1 and we denote

xµ = µx2 + (1− µ)x1. Then

µu(x2) + (1− µ)u(x1)− u(xµ) = E

[∫ ∞

0

µf
(
X x2

t

)
exp(−λt)dt+

∫ ∞

0

(1− µ)f
(
X x1

t

)
exp(−λt)dt

−
∫ ∞

0

f
(
X xµ

t

)
exp(−λt)dt

]
.

Denoting
Xµ

t

.
= µX x2

t + (1− µ)X x1
t

one has from assumptions

µu(x2) + (1 − µ)u(x1)− u(xµ) ≤ Kµ(1− µ)E

[∫ ∞

0

∣∣X x1
t −X x2

t

∣∣2 exp(−λt)dt
]

+E

[∫ ∞

0

f
(
Xµ

t

)
− f

(
X xµ

t

)
exp(−λt)dt

]

≤ K

λ
µ(1− µ)

∣∣x1 − x2
∣∣2 +KE

[∫ ∞

0

∣∣Xµ
t −X xµ

t

∣∣ exp(−λt)dt
]

(23)
(hereK is a generic positive constant). On the other hand, it follows

∣∣µa(x2) + (1− µ)a(x1)− a(xµ)
∣∣ =

∣∣µ
(
a(x2)− a(xµ)

)
+ (1− µ)

(
a(x1)− a(xµ)

)∣∣

≤ µ(1− µ)
∣∣〈
∫ 1

0

(
Da
(
xµ + θ(1− µ)(x2 − x1)

)

−Da
(
xµ + θµ(x1 − x2)

))
dθ, x2 − x1〉

∣∣
≤ Kµ(1− µ)|x1 − x2|2.

Analogously, one proves
∣∣µσ(x2) + (1− µ)σ(x1)− σ(xµ)

∣∣ ≤ Kµ(1− µ)|x1 − x2|2.
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By using on thestochastic differential equation(SDE) the Burkholder–Davis–Gundy inequality (see [18,
Theorem 3.28]) we obtain

E

[
sup
[s,t]

∣∣Xµ
t −X xµ

t

∣∣
]

≤ KE

[
sup

r∈[s,t]

∣∣∣∣
∫ r

s

(
µa(X x2

τ ) + (1− µ)a
(
X x1

)
− a
(
Xµ
)
dτ

∣∣∣∣
2
]

+KE

[
sup

r∈[s,t]

∣∣∣∣
∫ r

s

(
a
(
Xµ
)
− a
(
X xµ

τ

))
dτ

∣∣∣∣
2
]

≤ KE

[
sup

r∈[s,t]

∣∣∣∣
∫ r

s

(
µσ(X x2

τ ) + (1− µ)σ
(
X x1

τ

)
− σ

(
Xµ

τ

))
dBτ

∣∣∣∣
2
]

+KE

[
sup

r∈[s,t]

∣∣∣∣
∫ r

s

(
σ
(
Xµ

τ

)
− σ

(
X xµ

τ

))
dBτ

∣∣∣∣
2
]

≤ Kµ2(1− µ)2E

[∫ r

s

∣∣X x2
τ −X x1

τ

∣∣4dτ
]
+KE

[∫ r

s

∣∣Xµ
τ −X xµ

τ

∣∣2dτ
]

≤ Kµ2(1− µ)2
∣∣x1 − x2

∣∣4 + 2K

∫ r

s

E

[∣∣Xµ
τ −X xµ

τ

∣∣2
]
dτ ,

therefore by Gronwall inequality one has

E
[
sup
[s,t]

∣∣Xµ
t −X xµ

t

∣∣] ≤ Kµ(1− µ)
∣∣x1 − x2

∣∣2. (24)

Finally, (23) and (24) conclude the result. 2

Remark 4 It is clear that the semi-concavity (respectively semi-convexity) implies

∂2u

∂χ2
≥ (respectively≤) K in D′(RN) for all χ, |χ|2 = 1.

The above proof follows argument of [25, Proposition 4.4.5]. 2

3 The linear problem

There are many way to study the behavior of the reflection nearthe boundary (see, for instance, [12],
[18], [19], [21] or [23] ). Here we will employ the domain penalty method (see [3] or [16] for sharp details).
So, assuming (15), for everyδ > 0 to be sending 0, we consider the equation in the whole space





dX δ,x
t = −a(X δ,x

t )dt+ σ(X δ,x
t )dBt −

1

δ
ϕ(X δ,x

t )~γ(X δ,x
t )dt, t > 0,

X δ,x
0 = x ∈ R

N,

whereϕ is aW3 extension of the function dist4(·,Ω) to R
N, verifying

〈∇ϕ(x), ~γ(x)〉 > 0, x ∈ R
N,

for Lipschitz extensions of the dataa0, f, c0, g y ~γ to the whole spaceRN satisfying (5). In [3, Section 3]
one proves the convergence in law of{X δ,x

t }t≥0 to the unique solution{X x
t }t≥0 of

{
dX x

t = −a(X x
t )dt+ σ(X x

t )dBt − ~γ(X x
t )dL

x
t , t > 0,

X x
0 = x ∈ Ω,

The proof uses the property

lim sup
(y,y′)→(x,x′)

δ→0

Ey,y′

[∣∣X δ,y
t − X y′

t

∣∣] = |x− x′|, x, x′ ∈ Ω, (25)

therefore a better convergence holds.
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Remark 5 Really, in [3] the reflection term of the stochastic differential equation is denoted by other
way. 2

Next, we consider an extensionψ ∈ C1(RN) of the functiondist(z,Ω) for which




ϕ(z)

δ
=

dist4(z,Ω)

δ
,

ψ(z)

δ
=

dist(z,Ω)

δ
,

for dist(z,Ω) ≤ δ.

Then we construct the functions




fδ(z) = f(z) +
1

δ
ψ(z)g(z),

aδ(z) = a0(z) +
1

δ
ψ(z)c0(z),

aδ(z) = a(z) +
1

δ
ϕ(z)~γ(z),

z ∈ R
N,

that verify 



fδ(z) = f(z)
aδ(z) = a0(z)
aδ(z) = a(z),

z ∈ Ω,

independent onδ. Finally, we introduce

uδ(x) = E

[∫ ∞

0

fδ
(
X δ,x

t

)
exp

(
−
∫ t

0

aδ
(
X δ,x

s

)
ds

)
dt

]
, x ∈ R

N, (26)

for which

uδ(x) = E

[∫ t

0

fδ
(
X δ,x

s

)
exp

(
−
∫ s

0

aδ(X δ,x
r )dr

)
ds+ uδ(X δ,x

t ) exp

(
−
∫ t

0

aδ(X δ,x
s )dt

)]
, (27)

holds fort > 0 andx ∈ R
N, as in Proposition1 below. So that, the interior reasoning of Theorem1 leads

to

Proposition 3 Under assumptions on the data, for everyδ > 0, the functionuδ, given by(26), is a
solution of

−1

2
Tr
(
A ·D2uδ

)
+ 〈aδ,∇uδ〉+ aδuδ = fδ in R

N. 2

Certainly,uδ is bounded onΩ, uniformly in δ. Therefore we may construct the functions

u(x) = lim inf
yδ→x, yδ∈RN

δ→0

uδ(yδ),

u(x) = lim sup
yδ→x, yδ∈RN

δ→0

uδ(yδ),
x ∈ Ω, (28)

moreoveru is lower semi–continuous andu is upper semi–continuous and obvious inequality

u(x) ≤ u(x), x ∈ Ω,

holds. Next, we prove that, in fact, they coincide in a continuous weak solution providing the Brosamler
formula

Theorem 3 Under assumption(15), the functionu given in(8) is the unique continuous solution of the
problem {

Lu+ a0u = f in Ω,
〈∇u,~γ〉+ c0u = g on∂Ω.

(29)
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PROOF. First of all we note that from limit operations (see [7]) the functionsu(x) andu(x) are sub- and
super-solutions, respectively, of

Lu+ a00 = f in Ω.

On the other hand, given(p,Z) ∈ J 2,+

Ω
u(x0), x0 ∈ ∂Ω, andδ > 0 there existsxδ ∈ R

N and

(
pδ,Zδ

)
∈ J 2,+

Ω
uδ(xδ),

such that {(
xδ, uδ(xδ), pδ,Zδ

)}
δ
→ (x0, u(x0), p,Z) asδ → 0

(see [7, Lemma 6.1 and Proposition 4.3]). Moreover, with no loss of generality, we may assume

xδ = x0 + δ
1
4~n(x0).

Then
∇dist(x0,Ω) = ~n(x0),

and
dist(x,Ω) = 〈~n(x0), x− x0〉+ o(|x − x0|)

imply

ϕ(x)

δ
=

(
〈~n(x0), x− x0〉

)4

δ
+
o(|x− x0|)

δ
for δ small enough.

Hence

lim
δ→0

ϕ(x0 + δ
1
4 ~n(x0))

δ
= |~n(x0)|8 = 1

shows
lim
δ→0

aδ(xδ) = a(x0) + ~γ(x0).

Analogously, reasoning with
xδ = x0 + δ~n(x0),

it follows, from
ψ(x)

δ
=

〈~n(x0), x− x0〉
δ

+
o(|x − x0|)

δ
for δ small enough,

the properties 



lim
δ→0

ψ(x0 + δ~n(x0))

δ
= |~n(x0)|2 = 1,

lim
δ→0

fδ(xδ) = f(x0) + g(x0),

lim
δ→0

aδ(xδ) = a0(x0) + c0(x0).

So that,

−1

2
Tr
(
A ·D2uδ

)
+ 〈aδ,∇uδ〉+ aδuδ ≤ fδ in R

N,

leads to
[
− 1

2
Tr
(
A ·D2u

)
+ 〈a,∇u〉+ a0u− f

]
+

[
〈∇u,~γ〉+ c0u− g

]
≤ 0 onΩ,

in the viscosity sense, because

lim inf
δ→0

(
−1

2
Tr
(
A(xδ) · Zδ

)
+ 〈aδ(xδ), pδ〉+ aδ(xδ)uδ(xδ)− fδ(xδ)

)

=

[
− 1

2
Tr
(
A(x0) · Z

)
+ 〈a(x0), p〉+ a0(x0)u(x0)− f(x0)

]
+

[
〈p,~γ(x0)〉+ c0(x)u(x0)− g(x0)

]
.
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So, it proves thatu is a relaxed sub-solution of (29). A similar reasoning enables us to obtain

[
− 1

2
Tr
(
A ·D2u

)
+ 〈a,∇u〉+ a0u− f

]
+

[
〈∇u,~γ, 〉+ c0u− g

]
≥ 0 onΩ

that, now, proves thatu is a relaxed super-solution of (29). Moreover, since the boundary operator

B(x, r, p) = 〈p,~γ(x)〉 + c0(x)r − g(x)

satisfies the obliqueness (14) for m = 1, one concludes

u(x) ≤ u(x), x ∈ Ω,

(see [1, Theorem 2.2]), thus,u(x) = u(x) = u(x), x ∈ Ω, is a continuous solution of (29). In fact, it is the
unique solution of (29) (see [1, Theorem 2.2]). Finally, the convergence in law of{X δ,x

t }t≥0 to the unique
solution{X x

t }t≥0 and the regularity of the data implies that the functionu is given by the formula (8). 2

Remark 6 In order to understand the relaxed Neumann boundary conditions (see (11) and (12)) a main
question arises. How the equation holds on the boundary? Some authors have studied the question. See, for
instance, [1] or [7]. Essentially, ifu− ϕ attains a local maximum at somex0 ∈ ∂Ω, as we consider for the
viscosity sub-solutions, the same holds foru − ϕ − ψ

(
dist(·, ∂Ω)

)
wheneverψ is a smooth function and

ψ(0) = 0. Then the regularity of the boundary∂Ω and suitable obliqueness enable to construct a sharp test
function for which

min{Lu+ a0u− f,B(x, u,Du)} ≤ 0 on∂Ω

becomes
B(x, u,Du) ≤ 0 on∂Ω.

In an analogous way, for super-solutions one may construct asharp test function for which

max{Lu+ a0u− f,B(x, u,Du)} ≥ 0 on∂Ω

becomes
B(x, u,Du) ≥ 0 on∂Ω

i.e. therelaxed Neumann boundary conditionbecomes

B(x, u,Du) = 0 on∂Ω,

in the ordinary viscosity sense. We send [1] for details. We also note that if the boundary operator governs
Dirichlet boundary conditions

B(x, r, p) = r − g(x) on∂Ω,

the relative relaxed Dirichlet boundary condition becomesthe ordinary Dirichlet boundary condition under
a simple and well known assumption:the boundary∂Ω must consist of regular boundary points, as it was
proved, for instance, in [2], [8], [10] or [24]. 2

Remark 7 In the Brosamler formula (8) we can understand that theboundary paymentbecomes less active
with time guided by the cumulative rate

exp

(
−
∫ t

0

a0
(
X x

s

)
ds−

∫ t

0

c0
(
X x

s

)
dLx

s

)

per unit time, according to there were reflections produced on the boundary until the process “died near to
the boundary”, after of a possibly infinite number of reflections. 2

Here, we end with an application of Theorem3 to be used in certain estimate of the next section.
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Proposition 4 LetHλ
∂Ω be the relaxed solution of the boundary value problem

{
LHλ

∂Ω + λHλ
∂Ω = 0 in Ω,

〈∇Hλ
∂Ω, ~γ〉 = 1 on∂Ω.

(30)

Then, we have the representation

Hλ
∂Ω(x) = E

[∫ ∞

0

exp(−λt)dLx
t

]
> 0, x ∈ Ω. 2 (31)

Remark 8 WheneverL is uniformly elliptic, existence, uniqueness and regularity of functionHλ
∂Ω also

follows from [15, Theorem I.1] and the positivity can be obtained by using Hopf’s Principle (see [11]). We
note that in any case

λ 7→ Hλ
∂Ω(·)

is a decreasing and convex map. We also note that the borderline case

H0
∂Ω(x) = E

[
lim
t→∞

Lx
t

]
> 0, x ∈ Ω,

is a solution of {
LHλ

∂Ω = 0 in Ω,
〈∇Hλ

∂Ω, ~γ〉 = 1 on∂Ω.
2

Complementary regularity derived directly from the Brosamler formula can be obtained as in Section2.

4 The nonlinear boundary problem

In this section we will assume the condition (15) as well asc0(x) > 0, for which we will use the notation

a0(x) ≥ λ > 0, x ∈ Ω, and c0(x) ≥ ̺ > 0, x ∈ ∂Ω. (32)

In what follows we are going to study the dependence oncumulative actualization

exp

(
−
∫ t

0

a0
(
X x

s

)
ds−

∫ t

0

c0
(
X x

s

)∣∣v
(
X x

s

)∣∣m−1
dLx

s

)

for m > 1 andv ∈ C(Ω). More precisely, let us consider the application

T v(x) = E

[∫ ∞

0

f
(
X x

t

)
exp

(
−
∫ t

0

a0
(
X x

s

)
ds

)
dt

+

∫ ∞

0

g
(
X x

t

)
exp

(
−
∫ t

0

a0
(
X x

s

)
ds−

∫ t

0

c0
(
X x

s

)∣∣v
(
X x

s

)∣∣m−1
dLx

s

)
dLx

t

]
,

(33)

for x ∈ Ω. Again Theorem3 implies thatT v is the unique solution of the boundary value problem
{

LT v + a0T v = f in Ω
〈∇T v,~γ〉+ c0|v|m−1T v = g on∂Ω.

Our aim is clear:show the existence of a fixed pointu

T u(x) = u(x), x ∈ Ω.

Straightforward computations on the definition of (33) lead to

|T v(x)| ≤ sup
Ω

|f |
∫ +∞

0

exp(−λt)dt + sup
∂Ω

|g|Ex

[∫ ∞

0

exp(−λt)dLx
t

]
, x ∈ Ω,
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whence (31) derives the estimate

|T v(x)| ≤ 1

λ
sup
Ω

|f |+ sup
∂Ω

|g|Hλ
∂Ω(x), x ∈ Ω, (34)

where the functionHλ
∂Ω was introduced in Proposition4. That estimate gives the inclusion

T
(
C(Ω)

)
⊆ BR(0) ⊂ C(Ω),

for

R .
=

1

λ
sup
Ω

|f |+ sup
∂Ω

|g| sup
Ω

|Hλ
∂Ω|.

The existence of a point fixed is now obtained through continuity of applicationT .

Theorem 4 Let us assume the conditions(15) and (32). Then, form > 1 the mapping(33) is uniformly
continuous. As consequence, there exists a functionu ∈ C(Ω), such that





‖u‖C(Ω) ≤
1

λ
sup
Ω

|f |+ sup
∂Ω

|g| sup
Ω

|Hλ
∂Ω|,

T u = u in C(Ω),

given by the implicit Brosamler formula(16). Moreover,u is the unique solution of the boundary value
problem {

Lu + a0u = f in Ω,
〈∇u,~γ〉+ c0|u|m−1u = g on∂Ω.

PROOF. Let v, v̂ ∈ C(Ω) be two arbitrary functions. Then, for eachx ∈ Ω the inequality

(T v − T v̂) (x) ≤ ρ sup
∂Ω

|g|E
[∫ ∞

0

exp (−λt)
(∫ t

0

∣∣∣
∣∣v
(
X x

s

)∣∣m−1 −
∣∣v̂
(
X x

s

)∣∣m−1
∣∣∣ dLx

s

)
dLx

t

]

holds. Moreover, from definition

Lx
t = lim

δ→0

1

2δ

∫ t

0

1IΩδ

(
X x

s

)
ds,

given0 < ε < 1 there existsδε, small enough, such that

∫ t

0

dLx
s = Lx

t ≤ ε+
1

2δε

∫ t

0

1IΩε

(
X x

s

)
ds ≤ 1 +

t

2δε
,

whence

(T v − T v̂) (x) ≤
(
ρ sup

∂Ω
|g|E

[∫ ∞

0

exp (−λt) dLx
t +

1

2δε

∫ ∞

0

t exp (−λt) dLx
t

])
Hm(v, v̂), (35)

where

Hm(v, v̂)
.
=

{
Cm‖v − v̂‖m−1, if 1 < m ≤ 2,

Cm(‖v‖m−1 + ‖v̂‖m−1)
m−2
m−1 ‖v − v̂‖, if 2 ≤ m.

(36)

whereδε andCm are two positive constants independent onv andv̂ (see (38) in the Appendix below). From
the convexity

λ 7→ Hλ
∂Ω(·)

(see the Remark8) we obtain the inequality

H0
∂Ω(x) −Hλ

∂Ω(x) ≥ −λ ∂

∂λ
Hλ

∂Ω(x) = λE

[∫ ∞

0

t exp (−λt) dLx
t

]
> 0, x ∈ Ω.
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Finally, previous arguments lead to

(T v − T v̂) (x) ≤ ρ sup
∂Ω

|g| sup
Ω

(
Hλ

∂Ω +
1

2λδε
|H0

∂Ω −Hλ
∂Ω|
)
Hm(v, v̂), x ∈ Ω,

that proves the uniform continuity of the mapping

T : C(Ω) → C(Ω)

(see the definition ofHm in (36)). So that, from

T
(
BR(0)

)
⊆ BR(0), BR(0) ⊂ C(Ω),

with

R =
1

λ
sup
Ω

|f |+ sup
∂Ω

|g| sup
Ω

|Hλ
∂Ω|

we obtain, through an extension of the Brouwer Fixed Point Theorem (see [11, Theorem 11.1]), the exis-
tence of afixed point

u ∈ BR(0), T u = u.

Definition of mappingT enables us to obtain the representation formula (16) and to prove thatu is a solution
of the boundary value problem. On the other hand, since the boundary condition

B(x, r, p) = 〈p,~γ(x)〉+ c0(x)|r|m−1r − g(x), (x, r, p) ∈ Ω× R× R
N,

satisfies the obliqueness (14), the functionu is the unique continuous solution. 2

Remark 9 Theorem4 also holds for the problem

{
Lu+ a0u = f in Ω,

〈∇u,~γ〉+ c0Ψ(u)u = g on∂Ω.

assumed that for eachM > 0

r 7→ Ψ(r), |r| ≤ M,

is a positive uniform continuous function. Here the relative Brosamler formula is given by

u(x) = E

[∫ ∞

0

f
(
X x

t

)
exp

(
−
∫ t

0

a0
(
X x

s

)
ds

)
dt

+

∫ ∞

0

g
(
X x

t

)
exp

(
−
∫ t

0

a0
(
X x

s

)
ds−

∫ t

0

c0
(
X x

s

)
Ψ
(
u
(
X x

s

))
dLx

s

)
dLx

t

]
,

for x ∈ Ω. Moreover, ifrΨ(r) is nondecreasing the boundary operator satisfies the obliqueness

B(x, r, p+ η~n(x)) − B(x, s, p) = η〈~n(x), ~γ(x)〉 + c0(x)
(
Ψ(r)r −Ψ(s)s

)
.

Therefore the functionu is, in fact, the unique solution of the boundary problem. 2

5 Appendix. On a technical inequality

In [22] one proves the inequality

〈|θ|p−2θ − |θ̂|p−2θ̂, θ − θ̂〉 ≥





Cp|θ − θ̂|p, if 2 ≤ p,

Cp
|θ − θ̂|2

(
|θ|+ |θ̂|

)2−p , if 1 ≤ p < 2, |θ|+ |θ̂| 6= 0
(37)
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whereCp is positive constant depending on p. For the choiceθ = |ξ|m−1, θ̂ = |ξ̂|m−1 and(p − 1)(m −
1) = 1, inequality (37) becomes

〈|ξ| − |ξ̂|, |ξ|m−1 − |ξ̂|m−1〉 ≥





Cm

∣∣|ξ|m−1 − |ξ̂|m−1
∣∣ m
m−1 , if m ≤ 2,

Cm

∣∣|ξ|m−1 − |ξ̂|m−1
∣∣2

(
|ξ|m−1 + |ξ̂|m−1

)m−2
m−1

, if 2 < m, |ξ|+ |ξ̂| 6= 0.

For the casem ≤ 2 one has

∣∣|ξ|m−1 − |ξ̂|m−1
∣∣ ≤ C−1

m

(
〈|ξ| − |ξ̂|, |ξ|m−1 − |ξ̂|m−1〉

)m−1
m

≤ C−1
m

(
(|ξ| − |ξ̂|)m−1

mεm
+ ε

m
m−1

m− 1

m

∣∣|ξ|m−1 − |ξ̂|m−1
∣∣
)
,

by using Cauchy inequality. Then forε small enough we derives

∣∣|ξ|m−1 − |ξ̂|m−1
∣∣ ≤





Cm

∣∣ξ − ξ̂
∣∣m−1

, if m ≤ 2,

Cm

(
|ξ|m−1 + |ξ̂|m−1

)m−2
m−1

∣∣ξ − ξ̂
∣∣, if 2 < m,

(38)

(the case2 < m follows by straightforward computations).
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